欢迎登录山西益佳银物贸有限公司官方网站 站点地图
热门关键词: 波纹管PE给水管

简述喷灌系统(二)

发表于:2018-04-10 来源:山西益佳银
  

六、选型布置
1.喷头的选型
选择喷头时,除需考虑其本身的性能,如喷头的工作压力、流量、射程、组合喷灌强度、喷洒扇形角度可否调节之外,还必须同时考虑诸如土壤的允许喷灌强度、地块大小形状、水源条件、用户要求等因素。另外,同一工程或一个工程的同一轮灌组中,最好选用一种型号或性能相似的喷头,以便于灌溉均匀度的控制和整个系统的运行管理。在已建项目中,有的为片面追求水景效果,安装了各种性能截然不同的喷头,致使灌溉均匀度无法保证。选择喷头时需特别注意的是,灌溉系统不是喷泉,其目的是为了弥补植物需水时空上的不足,而不是创作人工水景。因此,只能在首先满足需水的前提下,尽量照顾到景观效果。此类喷头品种繁多,按射程分,有0.6~5.8米的小射程喷头,4.3~9.1米的中小射程喷头,8.5~15.9米的中等射程喷头,20米以上的大射程喷头;按喷洒类型分,有散射喷头,射线喷头,旋转喷头,射线旋转喷头;按使用场合分,有园林喷头,高尔夫喷头等等。这些喷头均可在加压喷水时自动弹出地面,而灌水停止时又缩入地面,不会影响园林景观上的机械作业。

1.1 小射程喷头一般为非旋转散射式喷头,如PROS系列、PS系列以及INST系列。这些喷头的弹出高度有50mm、75mm、100mm、150mm和300mm,可选配喷洒形式繁多或可调角度的喷嘴,喷灌强度较大。不但适用于小块灌溉,也可用于灌木、绿篱的灌水和洗尘。这类喷头的喷嘴大多为“匹配灌溉强度喷嘴”,即无论全圆喷洒,还是半圆或90度及其他角度,其灌溉强度基本相同。这种特性对保证系统的喷洒均匀度极为有利。
1.2中小射程喷头多为旋转喷头,如 SRM、PGJ系列齿轮驱动顶部调节喷头,射程为4.3~11.3米,弹出高度有100mm、150mm、300mm。这种喷头适用于中型面积绿地和灌木、花卉的喷灌。特别的如,MP系列地埋射线旋转喷头,射程3~9米,以其独特的喷洒方式,和由此而来的不可比拟的节水特性,尤其适合坡地和新植喷洒。
1.3 中等射程喷头多为旋转喷头,如亨特I-20、 PGP系列地埋旋转喷头。这些喷头适用于中型面积绿地的灌溉。弹出高度有100mm和300mm两种,适用于较大面积的灌溉。其中I-20喷头配有止溢阀,并且可选不锈钢升降柱,顶部带有独特阀门,可在系统运行时单独将某个喷头关闭,便于维修或更换喷嘴。
1.4 大射程喷头,如亨特I-31、 I-35系列、I-41系列、I-60系列、I-90系列均为旋转式齿轮驱动顶部有工具调节喷头,射程均在20米以上。其特点是材料强度高,抗冲击性能好。除用于大面积灌溉外,特别适合于运动场灌溉系统。其中I-60系列喷头,独有低压大射程功能,在压力为2.8bars(0.28Mp)时,射程可达18.9米。特别适合低压系统或者旧系统改造项目。
在各种射程的喷头中,均可选择“止溢型”喷头。带止溢功能的喷头一般安装在地形起伏较大的喷灌系统中的地形较低的部位,可有效防止当灌水停止时管道中的水从低位喷头溢出,影响喷头周围的正常生长。土壤的允许喷灌强度是影响喷头选型的主要因素之一。喷灌强度是指单位时间内喷洒在地面上的水深。我们一般考虑的是组合喷灌强度,因为灌溉系统基本上都是由多个喷头组合起来同时工作。对于喷灌强度的要求是,水落到地面后能立即渗入土壤而不出现积水和地面径流,即要求喷头的组合喷灌强度(ρ组合)应小于等于土壤的水入渗率。各类土壤的允许喷灌强度(ρ允许)的参考值见下表:

 

喷头组合喷灌强度的计算公式为:ρ组合(mm/h)=1000q/A
式中:q为单喷头的流量(m3/h);A为单喷头的有效控制面积(m2)。另外,土壤的允许喷灌强度随着地形坡度的增加而显著减小。如坡度大于12%时,土壤的允许喷灌强度将降低50%以上。因此,对于地形起伏的工程,在喷头选型时需格外注意。
2.喷头的布置
喷灌系统中喷头的布置包括喷头的组合形式、喷头沿支管上的间距及支管间距等。喷头布置的合理与否,直接关系到整个系统的灌水质量。喷头的组合形式主要取决于地块形状以及风的影响,一般为矩形和三角形,或为其特例正方形和正角形。矩形或正方形布置,适用于地块规则,边缘成直角的条件。这种形式设计简便,容易做到使各条支管的流量比较均衡;三角形或正三角形布置,适用于不规则地块,或地块边界为开放式,即使喷洒范围超出部分边界也影响不大的情况。这种布置抗风能力较强,喷洒均匀度要高于矩形或正方形,同时所用喷头的数量相对较少,但不易作到使各条支管的流量均衡。有时地块形状十分复杂,或地块当中有障碍物,使喷头的组合形式为不规则形。但在多数喷灌系统中,可尽量采用正方形或正三角形布置。
2.1 正方形布置
正方形布置时,喷头沿支管上的间距与支管间距相等,但对角喷头之间的距离是支管间距的1.41倍。考虑到风的影响,推荐喷头间距为喷头射程(R)的0.9-1.1倍,见下表:

 

2.2 正三角形布置
正三角形布置时,各个喷头之间的距离相等,但支管间距为喷头间距的0.866倍。考虑到风的影响,推荐喷头间距为喷头射程(R)的1.0-1.2倍,见下表:

 

在喷头布置完毕后,应根据实际布置结果对系统的组合喷灌强度进行校核。特别是在地块的边角区域,因喷头往往是半圆或90度而不是全圆喷洒,若选配的喷嘴与地块中间全圆喷洒的喷头相同,则该区域内的喷灌强度势必大大超过地块中间。所以,为保证系统良好的喷洒均匀度,一般安装在边角的喷头须配置比地块中间的喷头小2-3个级别的喷嘴。

七、系统设计
需水量包括土壤与地表的蒸发量和植物本身消耗的蒸腾量,也称作植物腾发量。影响需水量的因素有气象条件(温度、湿度、辐射及风速等)、土壤性质及其含水状况、植物种类及生育阶段等。由于上述这些影响因素错综复杂,确定灌溉需水量最可靠的办法是进行实际观测。但往往在规划设计阶段缺乏实测资料,这时就需要根据影响需水量的因素进行估算。估算灌溉需水量的方法很多,可通过公式进行计算,或参照下列经验数据选取:

 

表中,“冷”指仲夏最高气温低于21℃;“暖” 指仲夏最高气温在21至32℃之间;“热” 指仲夏最高气温高于32℃;“湿”指仲夏平均相对湿度大于50%;“干” 指仲夏平均相对湿度低于50%。灌溉系统的设计,应满足需水高峰期的日需水量,即按最不利的条件设计,选取特定气象条件下的最高日需水量,以使系统有足够的供水能力。
轮灌组
灌溉系统的工作制度通常分为续灌和轮灌。续灌是对系统内的全部管道同时供水,即整个灌溉系统作为一个轮灌区同时灌水。其优点是灌水及时,运行时间短,便于其他管理操作的安排;缺点是干管流量大,工程投资高,设备利用率低,控制面积小。因此,续灌的方式只用于单一且面积较小的情况。对于绝大多数灌溉系统,为减少工程投资,提高设备利用率,扩大灌溉面积,一般均采用轮灌的工作制度,即将支管划分为若干组,每组包括一个或多个阀门,灌水时通过干管向各组轮流供水。

1.轮灌组划分的原则
1.1 轮灌组的数目应满足需水要求,同时使控制灌溉面积与水源的可供水量相协调;
1.2 对于手动、水泵供水且首部无衡压装置的系统,每个轮灌组的总流量尽可能一致或相近,以使水泵运行稳定,提高动力机和水泵的效率,降低能耗;
1.3 同一轮灌组中,选用一种型号或性能相似的喷头,同时种植的品种一致或对灌水的要求相近;
1.4 为便于运行操作和管理,通常一个轮灌组所控制的范围最好连片集中。但自动灌溉控制系统不受此限制,而往往将同一轮灌组中的阀门分散布置,以最大限度地分散干管中的流量,减小管径,降低造价。
2.轮灌组数目的确定
轮灌组的数目,取决于每天允许运行时间、灌水周期和一次灌水延续时间。对于固定式灌溉系统,其轮灌组数目可根据下式确定:
N≤ cT/t
式中:
N - 系统允许划分轮灌组的最大数目,取整数。
c - 一天运行的小时数,一般不超过20小时。
T - 灌水周期,即两次灌水之间的间隔时间
3.轮灌组阀门的选择及其安装位置
3.1 轮灌组阀门即支管的控制阀的规格通常与支管的公称管径相同。在某些特殊情况下,阀门的尺寸可能小于或大于支管管径,但相差不应超过一级管径的范围。阀门的选择还受到阀门本身过流能力和压力损失的限制,特别是自动控制灌溉系统中的电磁阀,在选用时一定要考虑其技术性能。
3.2 阀门应设置在便于操作、维修的位置,特别是手动操作喷灌系统,最好将阀门安装在喷头的喷洒范围之外,使操作人员不会在工作时被淋湿。
3.3 阀门及其阀门井(箱)的位置不能影响正常的交通、人为活动及园林景观3.4 在可能的情况下,阀门最好位于所控制的一组喷头的中心部位,以利于平衡支管流量与压力,减小支管管径。水力计算在完成喷头选型、布置和轮灌区划分之后,即可计算各级管道的流量和进行水力计算。某一支管流量为该支管上同时工作的喷头流量之和,干管流量为系统中同时工作的喷头流量之和。流量确定后,即可选择管径并计算管道和系统的水头损失。水力计算的主要任务就是确定管道的水头损失。
1.管道水头损失的计算方法
水在管道内流动会产生机械能的损耗,即水头损失。水头损失可分为沿程摩阻力损失和局部阻力损失两种类型。沿程水头损失为水流过一定管道距离后由于水分子的内部摩檫而引起的损失;局部水头损失为水流经过各种管件、阀门等设备时因流态的变化而产生的损失。沿程水头损失与局部水头损失之和即为管道的总水头损失。
1.1沿程水头损失的计算
很多计算沿程水头损失的经验公式。对于硬质塑料管道(PVC),常用的计算公式如下:
H f = 9.48×104×(Q1.77/d4.77)×L
式中:Hf为沿程水头损失(m);L、Q、d分别为管道长度(m)、流量(m3/h)和管道内径(mm)。
1.2局部水头损失的计算
局部水头损失计算公式为:
Hj =ξ v2/2g
式中:Hj为局部水头损失(m);ξ为局部阻力损失系数,与管件、阀门的类型与大小有 关;v、g分别为管道中水的流速(m/s)和重力加速度(9.81m/s2)。
对于较大的灌溉系统,如真正按照公式计算各个管件、阀门处的局部水头损失,工作量将十分庞杂。因此在实际设计工作中,一般先计算出沿程水头损失Hf,然后取局部水头损失Hj = 10% Hf 即可满足设计要求。
2.支管水力计算
由于在支管上一般安装多个喷头,因此支管内的流量沿流程按一定规律递减,故支管的实际沿程水头损失比按支管总流量的计算值要小的多,即:Hf实际 = F × Hf
式中:F为多口出流系数,其值在一般在0.3-0.6之间,与出口数量、第一个出口位置和管材有关,可通过计算或查表得出。
支管的水力计算主要依据喷洒均匀的原则,即要求支管上任意两个喷头的出水量之差不能大于10%。将这一原则转化为对压力的要求,即应使支管上任意两个喷头处的压力不能超过喷头设计工作压力(H设)的20%。设计时,不但要计算水头损失,而且还要考虑地形对压力的影响。在实际工程中,有时为节省投资而采用变径支管,或受地块形状影响出水口不一定是等间距和等流量,这时就需要对支管分段进行计算。支管的水力计算往往是一个反复的过程。在喷头选型、布置和支管长度确定后,水力计算的基本流程为:计算支管流量→初设管径→计算水头损失→校核出水口处压力差是否小于等于20% H设→若超过20% H设,调整管径后重复计算→最后确定支管管径。
设计时,一般不用对所有支管进行计算,可选取最“危险条件”下的支管做水力计算。“危险条件”在大多数情况下发生在距首部最远的支管,或系统内地形最高部位的支管。若系统的压力能满足这些支管的压力要求,也就自然满足其他支管的压力要求。

3.干管水力计算
3.1 管径的初步确定
管道的管径,特别是干管的大小对灌溉系统的总投资影响较大。管径太大,投资增加,经济上不合理;管径太小,水头损失大,需配置较大水泵,系统运行费用高,且管内流速大,易产生水击现象,对管道的安全不利。干管管径的初步估算可采用以下经验公式:
D = 11Q1/2 (Q<120m3/h时)
式中:D为管径(mm);Q为流量(m3/h)。或采用经济流速法公式:D = 22.36(Q/V)1/2
式中:D为管径(mm);Q为流量(m3/s);V为经济流速,根据经验一般取V≤3m/s。
3.2 干管水力计算
干管水力计算相对支管简单一些,分别按不同管段的管径、流量和长度计算水头损失即可,其总的要求是在沿干管的各支管分流处的压力需满足各支管进口对压力的要求。
水泵的选择
选择水泵的主要任务是确定水泵的流量和扬程。在上述步骤完成后,即可计算流量和扬程。
水泵流量: Q = ∑N喷头q
水泵扬程: H = H设+∑Hf+∑Hj±Δ
式中:N喷头为同时工作的喷头数;q为单喷头流量;H设为喷头设计工作压力(m);∑Hf为水泵至典型喷头之间管路沿程水头损失之和(m),所谓典型喷头一般是距泵站最远或位置最高的喷头;∑Hj为水泵至典型喷头之间局部水头损失之和(m),其中应包括阀门、过滤设备及施肥设备的局部水头损失;Δ为典型喷头与水源水面或井内动水位的高差(m)。具体选择水泵型号时,可参照有关水泵生产厂家的产品目录,所选水泵的实际流量和扬程一般应稍大于上述计算值,以确保满足设计要求。对于用城市供水管网作为水源的灌溉系统,不必选择水泵,而是应校核供水管网所能提供的压力是否满足灌溉系统的所需压力(即上述计算的扬程值)。若不满足,一般需增大各级管径,以减小水头损失;或选择低压性能好的喷头,使灌溉系统所需压力小于等于城市供水管网的压力。

  

  【本文标签】: 喷灌   滴灌